PROGRAMME DE COLLES DE CHIMIE PC*1

SEMAINE N°6: 10 AU 15 NOVEMBRE

Formules de Lewis de la semaine : CO₃²⁻, Cl₂CO, C₂H₄, BrF₂⁺; N₂H₄, MnO₄⁻, CH₂Cl₂, IO₄⁻, O₂²⁻; NH₂⁻, BrO₇, H₂O₂, SiO₄⁴⁻; BrO₂, BrF₆⁺, SOCl₂

COURS

REVISIONS PCSI

Cristallographie (seule structure exigible : cfc)

CHAPITRE 9: DIAGRAMMES BINAIRES LIQUIDE-VAPEUR

- I. Rappels sur le corps pur
- II. Généralités sur les diagrammes binaires
- III. Diagrammes binaires à miscibilité totale à l'état liquide
- → Équations théoriques des courbes rosée/ébullition pour un mélange idéal :hors-programme
 - III.1 Miscibilité totale à l'état liquide
 - III.2 Tracé expérimental d'un diagramme binaire
 - III.3 Exploitation du diagramme
- \rightarrow Expression théorique des courbes d'analyse thermique (dépendance avec la capacité thermique du système) : hors programme
 - III.4 Allure des diagrammes notion d'homoazéotropie
 - III.5 Application à la distillation
- IV. Diagrammes binaires à miscibilité nulle à l'état liquide
 - IV.1 Miscibilité nulle à l'état liquide
 - IV.2 Tracé expérimental d'un diagramme binaire à hétéroazéotrope
 - IV.3 Exploitation du diagramme
 - IV.3.1 Description du diagramme
 - IV.3.2 Mélanges monophasés
 - IV.3.3 Mélanges diphasés
 - IV.3.4 Mélanges triphasés
 - IV.3.5 Détermination des coordonnées de l'hétéroazéotrope (à la limite du programme)
- → Équations théoriques des courbes de rosée : hors programme mais exercice sympa
 - IV.3.6 Étude des courbes d'analyse thermique
 - IV.4 Application à l'hydrodistillation
 - IV.4.1 Montage d'hydrodistillation
 - IV.4.2 Principe de fonctionnement extraction du limonène des écorces d'orange
 - IV.4.3 Appareil de Dean-Stark
- V. Diagrammes binaires à miscibilité partielle à l'état liquide
 - V.1 Miscibilité partielle à l'état liquide
 - V.2 Diagrammes binaires liquide-liquide
 - V.3 Diagrammes binaires liquide-liquide-vapeur
- Bilan : différentes formes caractéristiques de diagrammes binaires liquide-vapeur

PARTIE II: CONSTITUTION DE LA MATIERE: MODELISATION QUANTIQUE ET REACTIVITE

CHAPITRE 1 : ORBITALES ATOMIQUES

I. Préliminaires (pas de question de cours sur ce paragraphe)

- I.1 Caractéristiques de l'atome
- I.2 Caractéristiques de la lumière : dualité onde/corpuscule
- I.3 Interaction lumière matière

II. Description probabiliste de l'atome (pas de question de cours sur ce paragraphe)

- II.1 Principes de la mécanique quantique
- II.2 Densité de probabilité de présence de l'électron
- III. Modèle quantique de l'atome d'hydrogène
 - III.1 Résultats quantiques pour l'atome d'hydrogène
 - III.1.1 Orbitales atomiques
 - III.1.2 Nombres quantiques
 - III.2 Représentation des orbitales atomiques
 - III.2.1 Extension du nuage électronique
 - III.2.2 Forme et orientation du nuage électronique
 - III.2.3 Surfaces et courbes d'isodensité

\rightarrow seule question de cours possible sur le paragraphe III.2 : « représentations conventionnelles des OA s, p »

- III.3 Cas des hydrogénoïdes
 - III.3.1 Résolution de l'équation de Schrödinger
 - III.3.2 Représentation des OA des hydrogénoïdes
- IV. Modèle quantique pour les atomes polyélectroniques
 - IV.1 Position du problème
 - IV.2 Approximation orbitalaire ou monoelectronique
 - IV.3 Résolution de l'équation de Schrödinger
 - IV.4 Configurations électroniques
- V. Architecture du tableau périodique des éléments
 - V.1 Construction historique
 - V.2 Configuration électronique et tableau périodique des éléments
 - V.3 Ensemble d'éléments particuliers

L'évolution des propriétés dans la classification périodique n'a pas encore été traitée.

TRAVAUX PRATIQUES

Calorimétrie

Distillation

Appareil de Dean-Stark

EXERCICES

Thermodynamique : chapitres 1 à 9 en particulier autour des ruptures d'équilibre et binaires.

Structure de la matière : chapitre 1

- → Pas d'exercice mettant en jeu les expressions analytiques des OA
- → privilégier des exercices autour des configurations électroniques

Cristallographie PCSI (seule structure exigible: cfc; on donnera la description des autres structures étudiées)

Rémi Le Roux